
Quantum algorithms III: Shor

Quantum computing

G. Chênevert

Feb. 19, 2021

mailto:gabriel.chenevert@junia.com


Quantum algorithms III: Shor

Towards Shor

Period detection

Shor’s algorithm

Shor IRL



Quantum circuits

In the end, a quantum circuit is just a big unitary matrix.

n qubits: 2n × 2n unitary matrix

Things we can implement using unitary matrices:

• reflections

• rotations

• . . .

• Fourier transforms



Recall: Discrete Fourier Transform

N-point Fourier transform of a sequence x [0], . . . , x [N − 1]:

y [k] =
1√
N

N−1∑
j=0

e−
2πijk
N x [j ]

Matrix formulation:

y = F x with F =
1√
N


1 1 1 . . . 1

1 ζ ζ2 . . . ζN−1
...

...
...

1 ζN−1 ζ2(N−1) . . . ζ(N−1)(N−1)


where ζ = e−

2πi
N is a primitive N-th root of unity



Quantum Fourier Transform

Suppose we have a quantum state |ψ〉 ∈ VN :

|ψ〉 =
∑
x<N

αx |x〉

Its Fourier transform is the state

F |ψ〉 =
∑
y<N

βy |y〉

defined by

βy =
1√
N

∑
x<N

ζxy αx .



Quantum Fourier Transform

In other words: from a theoretical point of view

QFT of a state = DFT of the probability amplitudes

Often written in the equivalent form:

F |x〉 =
1√
N

∑
y<N

ζxy |y〉

Naive classical algorithm: O(N2) operations

Cooley-Tukey (1965): Fast Fourier Transform O(N logN) operations



Quantum Fourier Transform

Theorem

There exists a quantum circuit with O((logN)2) gates that computes the QFT.

For N = 2n, we can build such a circuit with O(n2)

• Hadamard gates H =
1√
2

[
1 1

1 −1

]

• controlled phase shifts Rm = P( 2π
2m ) =

[
1 0

0 e
2πi
2m

]

• swaps.



Small values of n

n = 0: F = I X

n = 1: F = 1√
2

[
1 1

1 −1

]
= H X

n = 2: with S = R2 = P(π2 ) =
√
Z

F =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

 =
|x0〉 H S ×

|x1〉 • H ×
X



Small values of n

n = 3: with T = R3 = P(π4 ) =
√
S

|x0〉 H S T ×

|x1〉 • H S

|x2〉 • • H ×



General QFT circuit

• n Hadamard gates

• 1 + 2 + · · ·+ (n − 1) =
(n
2

)
controlled phase shifts

• ≤
(n
2

)
swaps



Quantum algorithms III: Shor

Towards Shor

Period detection

Shor’s algorithm

Shor IRL



Summary: QFT

Fix N = 2n.

The N-point (quantum) Fourier Transform

F|x〉 =
1√
N

∑
y<N

ζxy |y〉, ζN = 1 primitive

is computable with a quantum circuit of size O(n2).



Application: Period detection

Suppose f : ZN → ZN is r -periodic:

f (x + r) = f (x) for all x .

Problem: find (smallest positive such) r .

A special case of the hidden subgroup problem.

Idea: we can detect the period using a Fourier transform.



Quantum period detection

|x〉 = |0〉 / H⊗n

Uf

QFT
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|y〉 = |0〉 /

Theorem

If f is r -periodic, then a multiple of N
r is measured.

Remark: for the moment we are assuming that r | N (else replace r by GCD(r ,N))



Proof in the r | N case

Write N = rs.

Evolution of the quantum state:

|0〉 ⊗ |0〉 H⊗n

7→ 1√
N

∑
x<N

|x〉 ⊗ |0〉 Uf7→ 1√
N

∑
x<N

|x〉 ⊗ |f (x)〉

QFT7→ 1

N

∑
x<N

∑
y<N

ζxy |y〉 ⊗ |f (x)〉

Now write x = j + kr , so that f (x) = f (j).



Proof in the r | N case

|ψ〉 =
1

N

∑
j<r

∑
k<s

∑
y<N

ζ(j+kr)y |y〉 ⊗ |f (j)〉 =
1

N

∑
y<N

∑
j<r

ζ jy
∑
k<s

(ζry )k︸ ︷︷ ︸
0 unless ζry=1

|y〉 ⊗ |f (j)〉

since

∑
k<s

(ζry )k =


1− (ζry )s

1− ζry =
1− 1

1− ζry = 0 if ζry 6= 1∑
k<s

1 = s if ζry = 1 i.e. s | y

In the end we have

|ψ〉 =
1

r

∑
t<r

∑
j<r

(ζs)jt |ts〉 ⊗ |f (j)〉



Proof in the r | N case

|ψ〉 =
1

r

∑
t<r

∑
j<r

(ζs)jt |ts〉 ⊗ |f (j)〉

Only values of y of the form ts have a non-zero probability of being measured:

P
[
y = ts

]
=

1

r2

∥∥∥∥∑
j<r

(ζs)jt |f (j)〉
∥∥∥∥2

In particular, in the special case where all values f (j) are distinct:

P
[
y = ts

]
=

1

r2

∑
j<r

|(ζs)jt |2 =
1

r2

∑
j<r

1 =
1

r



Approximate period detection

Now suppose f : [[0,N[[→ [[0,N[[ is almost r-periodic:

f (x + r) = f (x) for all 0 ≤ x < N − r .

Theorem

If f is almost r -periodic, then an approximate multiple of N
r is probably measured.

And then we can (probably) recover r with classical post-processing.



Analysis in the general case

Write N = rs + a with 0 ≤ a < r . Everything is the same until

|ψ〉 =
1

N

∑
y<N

∑
j<r

ζ jy
∑
k<sj

(ζry )k |y〉 ⊗ |f (j)〉

with sj =

s + 1 if 0 ≤ j < a

s if a ≤ j < r

∑
k<sj

(ζry )k =
1− (ζry )sj

1− ζry = ζ
ry(sj−1)

2 σsj
(
y r
N

)
where σα(x) =


sin(απx)

sin(πx)
x 6∈ Z

α x ∈ Z



Analysis in the general case

|ψ〉 =
1

N

∑
y<N

∑
j<r

ζ jy+
ry(sj−1)

2 σsj
(
y r
N

)
|y〉 ⊗ |f (j)〉

To simplify: under the assumption that all the p values f (j) are distinct:

P
[
y
]

=
1

N2

(
a σs+1

(
y r
N

)2
+ (r − a)σs

(
y r
N

)2)
cf. Sage visualization

https://sagecell.sagemath.org/?z=eJyFUkFuwjAQvFfiDytEhQ2mSVBbVUiWeuvNF45ViwIYsGqcZB3a8Puu0ygJcOgeHGc8npm1_WpcqTHdlIO7wd1W72DFlPTWbDWyRCTzF5EIgtOTLWXyLGy61lYOR2o05AKwY87jHvGx5WHN84fsZ6Xdt9yl1uvmf52ilyWeNF8Eb6AK_p5VoghQAP7GUIZWjGO5mVQcpIR40a11s1CoyxM6KK4VNFn_t6mxKMgkau366ZaUDhR1fpuwAAkqirBDbEDgHvCa2rglkfqcwwQYMSd141BME07YFBjOLG_RgF3kyNm5y3EjvGQ4OUeqYfTdzXFPod4wzQ9m49nl2q67mN5B7TKEMxgHmLq9ZoovLo8uSE4lWOM0g3fKFdONh3ghoxLI-YeAkuy-nPZe1o3cmtLr6Ok2mrnNSlZ3U7XdkHYl4ulDnAg1o5GATWYzlGPU27Go96zyjJ61l09x3JgFD0aqAs5H42QsoGq_aSUV_wXTorvL&lang=sage&interacts=eJyLjgUAARUAuQ==


Analysis in the general case

Proposition

The probability that bt Nr c or dt Nr e is measured is asymptotically ≥ 4
π2 ≈ 40%

with t uniformly distributed among [[0, r [[.

Thus probability .4
(
1− 1

r

)
of getting a ”good” result y .

Fact: If N > 2r2, the period r can be efficiently recovered since t
r appears in lowest

terms in the continued fraction expansion of y
N and if r is large, t and r will most likely

be coprime (probability ≈ 1
log log r of failure).

https://en.wikipedia.org/wiki/Continued_fraction#Infinite_continued_fractions_and_convergents


Quantum algorithms III: Shor

Towards Shor

Period detection

Shor’s algorithm

Shor IRL



Shor’s algorithm (1994)



Shor’s algorithm

(Probably) factors an integer N with quantum complexity

O
(
(logN)2(log logN)(log log logN)

)
This is much better than the best currently known classical algorithm

that has complexity

O
(
e1.9(logN)

1
3 (log logN)

2
3
)

https://en.wikipedia.org/wiki/General_number_field_sieve


A note on complexity

If N is an integer that can be written on n bits:

N < 2n so log2(N) < n.

This is the natural parametrer to measure the size of an integer.

Factorization on a classical computer: O
(
e1.9n

1
3 (log n)

2
3
)

Factorization on a quantum computer: O
(
n2(log n)(log log n)

)
=⇒ BQP

quasiexponential speedup



Factoring vs period finding

Suppose N = pq with p and q two distinct prime numbers.

Theorem (Euler)

For any integer a coprime with N, we have ar ≡ 1 mod N for

r = ϕ(N) = (p − 1)(q − 1).

In other words: r is a period for the function f : x 7→ ax mod N.



BPP reduction from factoring to period finding

To factor N = pq:

• pick a random integer a ∈ [[0,N[[

• with high probability GCD(a,N) = 1

• if x 7→ ax mod N has odd period, pick another a

• so now we have an integer a of even multiplicative order 2r : a2r ≡ 1 mod N

N | a2r − 1 = (ar − 1)(ar + 1)

• there is a 50% chance that GCD(N, ar ± 1) are non-trivial divisors of N



Small example: N = 21

Try a = 4:

4 → 42 = 16 → 43 ≡ 1 7

Try a = 5:

5 → 52 ≡ 4 → 53 ≡ 20 → 54 ≡ 16 → 55 ≡ 17 → 56 ≡ 1

but GCD(53 − 1, 21) = 1, GCD(53 + 1, 21) = 21 7

Try a = 2:

2 → 22 = 4 → 23 = 8 → 24 = 16 → 25 ≡ 11 → 26 ≡ 1

and GCD(23 − 1, 21) = 7, GCD(23 + 1, 21) = 3 X



Implementation

So we need a quantum implementation Uf of the function

f (x) = ax mod N.

Shor picks Q = 2n > N2 in order to be able to apply postprocessing and considers the

function f (x) for x ∈ [[0,Q[[.

If x is written in binary:

x = 2n−1bn−1 + · · ·+ 21b1 + 20b0

then

ax = (a2
n−1

)bn−1 · · · (a2
1
)b1 · (a20)b0



Implementation

Thus we only need to implement ”multiplication by a2
k

mod N”

This is actually the difficult part. One approach is to translate reversible classical

arithmetical circuits into quantum circuits + classical pre-processing



Quantum factoring: summary

To find a nontrivial factor of N:

• Pick Q = 2n large enough

• Choose a coprime with N randomly

• Implement modular exponentiation f (x) = ax mod N as a quantum circuit

• Apply QFT + classical post-processing to recover period R of f

• Repeat until R = 2r is even and GCD(ar − 1,N) 6= 1,N

• Output GCD(ar − 1,N)



Quantum algorithms III: Shor

Towards Shor

Period detection

Shor’s algorithm

Shor IRL



Recent history of factoring

• 1977: RSA public-key cryptosystem, based on the difficulty of factoring large

quasiprime integers N = pq

Scientific American Challenge: factor RSA-129 ≈ 2426

• 1981: Quadratic sieve

• 1994: RSA-129 factored (1600 computers)

• 1996: General number field sieve, RSA-130 ≈ 2430 factored

...

• Feb. 28, 2020: RSA-250 ≈ 2829 factored (P. Zimmerman, INRIA)

2048-bit RSA moduli are considered out of reach for the next 25 years

https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-February/001166.html


Quantum computers might change that



Quantum computers might change that



How to factor 2048-bit RSA integers in 8 hours



Back of the envelope estimation

Today: 50 qubits

When would we have functional quantum computers with 2× 108 qubits ?

Multiplicative factor of 400.000 ≈ 218

18 doublings – assuming the continuing validity of Rose’s law

≈ 18× 1.5 = 27 years of safety X



The uncertain future of modular arithmetic-based cryptography

Still: large-scale quantum computers would have a definite asymptotic quantum

advantage over classical algorithms. Indeed, for:

• RSA encryption and signatures (hardness of factoring)

• DSA signatures,

• elliptic curve cryptography (hardess of the discrete logarithm problem)

a quantum attacker breaks the system essentially as fast as classical users Alice and

Bob users are able to use it with the appropriate private key . . .

=⇒ ongoing NIST Post-quantum cryptography competition

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography


Quantum factoring records

• 2001: 15 factored (IBM, Shor on 7 qubits)

• 2012: 21 factored (a = 4, 1 qubit + 1 qutrit)

”Compiled version of Shor’s algorithm”

(see Pretending to factor large numbers on a quantum computer)

https://www.nature.com/articles/414883a
https://arxiv.org/abs/1111.4147
https://arxiv.org/abs/1301.7007


More recently: quantum annealing

• 2014: 56153 factored

• 2017: 291311 factored

• 2019: 1099551473989 factored

Numbers having a specific shape:

56153dec = 1101101101011001bin

291311dec = 1000111000111101111bin

https://arxiv.org/abs/1411.6758
https://arxiv.org/pdf/1706.08061.pdf
https://quantumcomputing.stackexchange.com/questions/9204/the-algorithm-of-the-new-quantum-factoring-record-1-099-551-473-989

	Towards Shor
	Period detection
	Shor's algorithm
	Shor IRL

